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Abstract. A new and flexible method has been developed for studying the transport properties
of electron waveguides. The approach uses the embedding method for confined quantum systems
to calculate the eigenstates and Green function for the structures. The infinite potential at the
waveguide walls is replaced by an embedding potential which is added onto the Hamiltonian
for the inside of the waveguide. The wavefunction or Green function is then expanded in
any convenient basis set and the transmission and reflection coefficients calculated. In this
paper we have studied a 90◦ circular corner, a right-angled corner and a kink. To understand
the transmission results more fully the current density has been calculated. Bound states and
resonances have also been explored for the two corner geometries by calculating the local density
of states. Both the transmission and local density of states exhibit lineshapes which correspond
to scattering Fano resonances.

1. Introduction

There is much interest in the transport properties of electrons in mesoscopic structures, due
on the one hand to advances in fabrication technology, and on the other hand to theoretical
developments in quantum conductance [1]. The size of these structures, on the scale of
nanometres, is comparable with the carrier elastic and inelastic mean free paths, and the
transport is ballistic with scattering at the boundaries dominating. In this paper we describe
a new and flexible method for calculating the transport properties of mesoscopic structures,
using the embedding method [2] for calculating the electron Green function. The method
can be used for any mesoscopic structure, but here we concentrate on the transport properties
of electron waveguides. These waveguides are used as connections between devices, and
it is therefore inevitable, due to size constraints, that they will be curved. In this paper we
compare the transport properties of a 90◦ circular corner, a right-angled corner and a kink
(figure 1); we shall use the current densities to show how electrons go round corners, and
in particular how electrons can become trapped.

Our model of the waveguide is standard—a constant potential bounded by reflecting
walls. In our method, the infinite potential at the walls is replaced by an embedding potential
which is added onto the Hamiltonian for the inside of the waveguide. Any convenient
basis set can be used to expand the electron wavefunctions or Green functions, and the
embedding potential imposes the right boundary conditions of reflection at the boundary.
The advantages of this embedding method are firstly, that it is flexible, easy to set up,
and computationally efficient; secondly, that the embedding potential can be chosen either
to describe hard boundary conditions (specular reflection) or softer boundary conditions to
describe loss processes; and thirdly, that the use of basis functions makes it easy to include
atomic potentials or external fields.
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Figure 1. A schematic diagram of the corner geometries studied.
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Figure 2. The convergence of the first four eigenvalues withM (whereM2 is the basis set
size), for the circular corner, with inner radius 0.2 au and outer radius 1.2 au.

Previous studies on curved waveguides can be divided into two main groups. The first
of these involves mode matching [3–6], in which the guide is divided into three separate
regions: the input and output leads, and the corner region. Solutions of the Schrödinger
equation at a particular energy are then matched in amplitude and derivative at the interfaces
of the three regions. This method has been applied by Sols and Macucci [3], for example,
to study transmission through circular corners. Explicit forms for the wavefunction in the
straight input and output leads and the circular corner itself are used, with Schrödinger’s
equation in the corner region being expressed in polar coordinates. In the second class of
methods, the Schrödinger equation is discretized in the region of the waveguide bend, and
the wavefunction calculated numerically [7]. An efficient method of calculating the Green
function for a discretized Hamiltonian is the ‘causal-surface Green’s function method’ of
Pendryet al [8], which they have applied to calculations of ballistic electron transport in
waveguides with complex geometry. More complicated structures can be divided up into
slices, for each of which the transmission and reflection matrices are found [9].

The plan of this paper is as follows. The embedding method for calculating the electron
Green function in waveguides is described in section 2, and the calculation of reflection
and transmission coefficients and current density in section 3. The results for the different
waveguide geometries are presented in section 4, and compared with previously published
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Figure 3. Wavefunctions for the first two eigenvalues for the circular corner.

calculations. Finally in section 5, bound-state energies and local densities of states for the
two corners are presented.

We use atomic units, withe = h̄ = m = 1, throughout.

2. Embedding for confined systems

Embedding is a convenient way of solving the Schrödinger equation in a region of space
I, joined over surface S onto some substrate region II. The wavefunction has to match in
amplitude and derivative across S, which is equivalent to solving the Schrödinger equation
in I subject to the boundary condition that the wavefunction has the right logarithmic
derivative. The embedding method gives a way of specifying this boundary condition, and
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Figure 4. The convergence of the partial transmission probabilities,Tpq , with the number of
channels. Plot (a) is the probability for an electron in channel 1 to be transmitted into channel 1,
(b) is that for transmission into channel 2 from channel 1 and (c) is that for transmission into
channel 3 from channel 1.

it results in the following variational principle for a trial function defined only in region I:

E =
[∫

I

d3r φHφ + 1

2

∫
S

d2rs φ
∂φ

∂ns
+
∫
S

d2rs

∫
S

d2r ′s φ
(
G−1

0 − εφ
∂G−1

0

∂ε

)
φ

]
×
[∫

I

d3r φ2−
∫
S

d2rs

∫
S

d2r ′s φ
∂G−1

0

∂ε
φ

]−1

. (1)

Here∂φ/∂ns is the outward-normal derivative ofφ on S;G−1
0 , the embedding potential, is

the surface inverse ofG0, the Green’s function for region II evaluated at some energyε

with zero normal derivative on S. The energy derivative ofG−1
0 , which appears in both the

numerator and denominator, provides a correction to the embedding potential so that it is
evaluated (to first order) at energyE rather thanε.

Minimizing E, φ satisfies the Schrödinger equation

Hφ = Eφ (2)

inside region I, and at the boundaryφ and∂φ/∂ns match correctly onto the solution of the
Schr̈odinger equation in region II.

In the case of electrons confined by an infinite barrier potential, the confinement region
constitutes region I, and the infinite potential is replaced by a very large constant potential
V , constituting region II. The embedding potential which replaces region II is then given
by

G−1
0 (rs , r

′
s) ≈

√
V

2
δ(rs − r′s). (3)

For largeV it is a local potential, and energy independent, and hence (1) simplifies.
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Figure 5. The transmission probabilitiesTpq as functions of the energy relative to the first
threshold energy, for input into channel 1, for the circular corner.
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Figure 6. The total transmission as a function of the energy for the energy window near the
first threshold energy for the circular corner, demonstrating the rapid change in transmission.

Minimizing E then leads to a wavefunction satisfying (2), and at the boundary

∂φ(rs)

∂ns
= −
√

2V φ(rs). (4)
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Figure 7. The current density for the circular corner at (a)E = 6.0 (1.2× E1), (b) E = 19.71
(3.995× E1), (c) E = 19.73 (3.998× E1), (d) E = 19.74 (3.999× E1).

For largeV , and well-behaved functions, this means that

φ(rs) ≈ 0 (5)

as we require. In practice, very large values ofV can be used, typically 105 au, and
exponential decay of the wavefunction into II can be made as small as we like.

To find the eigenstates,φ is expanded in terms of basis functionsχi , not satisfying any
particular boundary conditions on S:

φ(r) =
∑
i

aiχi(r). (6)

Then the variational principle gives the generalized eigenvalue equation:∑
j

Hij aj = E
∑
j

Oij aj (7)
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Figure 7. (Continued)

with the following matrix elements:

Hij =
∫
I

d3r χi(r)Hχj (r)+ 1

2

∫
S

d2rs χi
∂χj

∂ns
+
√
V

2

∫
S

d2rs χi(rs)χj (rs)

Oij =
∫
I

d3r χi(r)χj (r).

(8)

The Green’s function for this confined system, satisfying(
−1

2
∇2+ V − E

)
G(r, r′) = δ(r − r′) r, r′ in I (9)

with

G(rs , r
′) ≈ 0

is given by

G(r, r′) =
∑
ij

(H − EO)−1
ij χi(r)χj (r

′) (10)
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and we shall use this in section 3 to calculate the transmission coefficients of the waveguide.
As an example of the embedding method, we shall calculate the wavefunctions for the

circular corner shown in figure 1. The wavefunctions should go to zero at the edges of the
waveguide, and we shall also impose a zero-derivative boundary condition at the ends of
the piece of waveguide. (This zero-derivative boundary condition is needed subsequently,
as we shall see in section 3, for calculating the transmission.) The basis functions that we
use are

χi = cos
kπx

r2
cos

lπy

r2
(11)

wherer2 is the square side—the outer radius; these automatically satisfy the zero-derivative
boundary condition at the ends, but do not satisfy any conditions on the sides of the
waveguide. Figure 2 shows the convergence of the first four eigenvalues with basis set
size for a circular corner with inner and outer radii 0.2 and 1.2 au. The embedding potential
that we use corresponds to a confining potential of 105 au. The eigenvalues converge well,
with a basis set size of 11× 11 giving very accurate eigenvalues. Typical results for the
wavefunctions are shown in figure 3, and we see that they go nicely to zero at the waveguide
boundary.

The advantages of the embedding method are well demonstrated by this example—
flexibility in the choice of basis function, and excellent, uniform convergence. With this
plane-wave basis set, it would also be very easy to calculate the transmission through the
impurity atoms in region I, for example [10, 11]. The reason for the good convergence
is that the system is unconstrained outside region I. If the basis set is too big, problems
of overcompleteness can arise, but these can be minimized by increasing the numerical
accuracy, and seem to be rarely problematic.

3. Transmission, reflection and current density

To calculate the transmission and reflection coefficients of region I, we use the Green
function to find the transmitted and reflected wavefunctions originating from a particular
incident wave. Let us write the total wavefunction due to this incident wave asψ ; then in
region I inside the waveguide,ψ andG satisfy the Schr̈odinger equation:(

−1

2
∇2+ V (r)− E

)
ψ(r) = 0 (12)(

−1

2
∇2+ V (r)− E

)
G(r, r′) = δ(r, r′). (13)

Multiplying equation (12) byG, equation (13) byψ , subtracting, and integrating through I
gives

ψ(r′) = 1

2

∫
I

d3r′
[
G(r, r′)∇2ψ(r)− ψ(r)∇2G(r, r′)

]
. (14)

Using Green’s theorem this becomes

ψ(r′) = 1

2

∫
RH

d2rs

[
G(r′, rs)

∂ψ(rs)

∂ns
− ψ(rs) ∂G(r

′, rs)
∂ns

]
− 1

2

∫
LH

d2rs

[
G(r′, rs)

∂ψ(rs)

∂ns
− ψ(rs) ∂G(r

′, rs)
∂ns

]
(15)

where the surface integrals are over the right-hand and left-hand ends of the waveguide, and
the normal derivatives are taken from left to right along the waveguide—outside to inside
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at the left-hand end and inside to outside for the right-hand end. This equation simplifies
if we takeG to satisfy zero-derivative boundary conditions at both ends, and puttingr′ at
each end we obtain the integral equations

ψLH = 1

2

∫
RH

d2r′R G(rL, r
′
R)
∂ψ(r′R)
∂ns

− 1

2

∫
LH

d2r′L G(rL, r
′
L)
∂ψ(r′L)
∂ns

(16)

ψRH = 1

2

∫
RH

d2r′R G(rR, r
′
R)
∂ψ(r′R)
∂ns

− 1

2

∫
LH

d2r′L G(rR, r
′
L)
∂ψ(r′L)
∂ns

(17)

whererL andrR are now the surface variables over the left-hand and right-hand ends of
region I.
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Figure 8. The transmission probabilitiesTpq as functions of the energy (relative to the first
threshold energy) for the square corner.

In the straight input and output waveguides connected to region I, the wavefunction at
energyE is a linear combination of channel functions:

ψ±p (x, y) = sin

(
pπy

w

)
exp(±ikpx) (18)

k2
p = 2E − p

2π2

w2
. (19)

w is the width of the guide, with variabley along the width andx along the length
(confinement in thez-direction just adds a constant energy to the whole problem). Then
the total wavefunction in the input waveguide connected to the left-hand end of region I,
corresponding to an incident wave in channelq, is given by

ψ =
∑
p

(δpq exp(ikpx)+ rpq exp(−ikpx)) sin

(
pπy

w

)
(20)
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Figure 9. The current density for the square corner at (a)E = 9.87 (2× E1), (b) E = 18.8
(3.8× E1), (c) E = 24.7 (5× E1), (d) E = 39.5 (8× E1).

and in the output waveguide connected to the right-hand end

ψ =
∑
p

tpq exp(ikpx) sin

(
pπy

w

)
. (21)

We note thatq is always an open channel—one for whichkq in (19) is real—whereasp is
summed over all channels, including those for whichkp is imaginary.

To find the reflection and transmission coefficientsrpq and tpq , we substitute (20) and
(21) into (16) and (17). At the left-hand end we have

ψ(rL) =
∑
p

(δpq + rpq) sin

(
pπy

w

)
∂ψ(rL)

∂ns
=
∑
p

(δpq − rpq)ikp sin

(
pπy

w

) (22)



An embedding approach to electron waveguides 5933

Figure 9. (Continued)

and at the right-hand end

ψ(rR) =
∑
p

tpq sin

(
pπy

w

)
∂ψ(rR)

∂ns
=
∑
p

ikptpq sin

(
pπy

w

) (23)

Substituting into (16) and (17), the integral equations become matrix equations forrpq and
tpq ; the sum over channels has to be truncated, of course, and in practice six channels are
sufficient forq in the first three open channels. What is relevant for conductance is

Tpq = |tpq |2vp
vq

(24)

Rpq = |rpq |2vp
vq

(25)

where vp and vq are the wave velocities in the channels, soTpq and Rpq represent the
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transmission and reflection probabilities respectively. To understand our transmission results
we shall also calculate the current density. This is given by

J = 1

2i

(
ψ∗∇ψ − ψ∇ψ∗

)
(26)

Having found rpq , tpq and consequently knowingψ(rL), ∂ψ(rL)/∂ns etc we can find
ψ(r), and henceJ(r) throughout region I from our Green function result (15). Current
flow studies have also been done by Ji [12], Berggrenet al [6, 13] and Lent [14], who have
examined double circular bends, a cross-bar structure and a cavity in a quantum waveguide.

4. Transmission round corners

To begin with, we shall examine the convergence of the transmission probabilities for the
circular corner using the same system which we used to check the convergence of the
eigenvalues in section 2. It was found from the eigenvalue convergence that a basis set size
of 11×11 gave an accurate value, and we thus use this size for the rest of the calculations.
Figure 4 shows how the transmission probabilities converge as the number of channels is
increased, at a fixed energy of 12 relative to the threshold energy for the first channel. The
transmission probabilities converge well, and six channels are sufficient to give an accurate
value.

We now go on to look at the energy dependence of the transmission round the circular
corner. Figure 5 shows the partial transmission probabilities for input in channel 1 as
functions of the energy (relative to the threshold energy for this channel). The results are
identical to those of Sols and Macucci [3] and Lent [7]. As the energy increases, the higher-
order exit channels open up and it is then possible for the incoming wave incident in the
first channel to be scattered into one of these higher-order channels. Although not apparent
on the energy scale of figure 5, the transmission at energies just below the channel threshold
energies changes rapidly. This can be seen in figure 6 where we have zoomed in on the
region around the first threshold energy, and we see that the transmission drops to zero very
sharply and rises just as rapidly. This lineshape corresponds to a scattering Fano resonance
in which the continuum of the first channel interacts with a bound state just below the
threshold in the second channel [15]. Interference between direct transmission in the first
channel and transmission via the bound state in the second channel leads to this lineshape. In
section 5 we shall examine the Fano resonances further. The total transmission probability is
practically unity at all energies except in these tiny energy windows just below the threshold
energies, showing that the corner does not seriously restrict the flow of electrons.

Next we will look at the current density in the circular corner. This has been evaluated
using equation (26), and is shown in figure 7. Here it is plotted for particular energies
using arrows which represent the direction and magnitude of the current density over a
grid of points in the guide. As the energy increases and more exit channels open up,
the current density goes from a laminar flow pattern to one which is more complicated.
Particularly interesting is the current density within the small energy window just below the
first threshold energy; here the flow pattern changes rapidly from a uniform flow pattern to
one which contains current vortices. This can be seen in figures 7(b), 7(c) and 7(d) where
the current density has been plotted for energies just above, just below and at the first dip
in the transmission. When the transmission is a minimum (figure 7(c)) the electrons get
trapped in the corner and circulate round these vortices. Despite the complicated current
flow, the total transmission is practically unity everywhere except at the anti-resonances
close to the thresholds.
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We now consider the right-angled corner. We use the same width of waveguide and
confining potential that we used for the circular corner. The transmission probabilities as
functions of the energy can be seen in figure 8, once again for input in channel 1. The
transmission results are the same as those published by Wuet al [5] and Weisshaaret al
[16]. First we look at the total transmission probability shown in figure 8. Unlike the
case for the circular corner, the total transmission probability is always less than unity
and has larger energy windows in which the transmission drops to near zero. As before,
these abrupt changes occur near the threshold energies for a new channel. It can be seen
from the partial transmission probabilities, shown in figure 8, that as the energy increases
and a new channel opens up, the new channel carries most of the current until the next
threshold is reached. In other words the square corner behaves as quite an efficient mode
convertor. The current-density plots (figure 9) give some idea about what is happening to
the electrons at these energies. They have been plotted for energies at which maximum
and minimum transmission occurs. It can be seen that at a minimum in transmission, as
with the circular corner, the electrons get trapped in the corner and travel round the vortices
with little transmission. As before, the current density starts with laminar flow and acquires
more structure as the energy increases.
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Figure 10. The total transmission probability as a function of the energy for the kink.

Finally, we shall discuss the results for the kink. The results shown are for a kink with
width 0.5 au and length 1.0 au (figure 1). Figure 10 shows the total transmission probability
as a function of the energy, which is almost identical to the results published by Yalabik
[17]. There is more structure in this transmission curve than for the other corners, again with
peaks and troughs corresponding to energies at which a new channel opens up. As with the
square corner, the total transmission drops to zero at some points. From the current-density
plots (figure 11) it can be seen that at the energy of the first minimum (figure 11(b)) there
is total reflection at the edges and the electron is trapped inside the corner and circulates
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Figure 11. The current density for the kink at (a)E = 23.0 (1.17× E1), (b) E = 45.0
(2.28× E1), (c) E = 59.0 (2.99× E1) and (d)E = 94.0 (4.76× E1).

round without transmission. Again the current flow pattern becomes more complicated as
the energy is increased and more exit channels open up.

5. Bound states and resonances

We shall now calculate the density of states of the corners, in order to study bound states
[18] and resonances—from general scattering theory, resonances will affect the transmission
[19]. The density of states—a static property of the system—has hardly been looked at till
now, though Ulreich and Zwerger [20] have recently published results for a quantum point
contact. It can be conveniently calculated in our approach, by adding embedding potentials
to the left- and right-hand ends of region I to simulate—exactly—the effect of matching the
states in the corner region onto the wavefunctions in the connecting waveguides.
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Figure 11. (Continued)

The embedding potential,6, can be found directly from the formula

−1

2

∂ψ(rs)

∂ns
=
∫
S

d2r′s 6(rs , r
′
s)ψ(r

′
s). (27)

This is a generalized logarithmic derivation giving the derivative of the states at the junction
of the straight waveguide in terms of the amplitude. The integral in (27) is over this
boundary, and the normal derivative is outwards from the corner region. As we are interested
in the static density of states, the embedding potentials correspond to outgoing travelling
waves from region I in open channels, and outwardly decaying exponentials in the closed
channels. In the left-hand waveguide the solutions of Schrödinger’s equation at energyE
are then given by

ψp(x, y) = sin

(
pπy

w

)
exp(−ikx) (28)
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Figure 12. The density of states as a function of the energy (relative to the first threshold
energy) near the bound-state energy for the circular corner.

where

k2 = 2E − p
2π2

w2

if positive, or

ψp(x, y) = sin

(
pπy

w

)
exp(γ x) (29)

where

γ 2 = p2π2

w2
− 2E

if negative.
From these we can obtain the outward-normal derivatives:

∂ψp

∂ns
= −∂ψp

∂x
= ik sin

(
pπy

w

)
exp(−ikx) (30a)

or

∂ψp

∂ns
= −γ sin

(
pπy

w

)
exp(γ x). (30b)

Hence the embedding potential which replaces this waveguide is given by

6(y, y ′) = − 1

w

∑
p

ikp
−γp

}
sin

(
pπy

w

)
sin

(
pπy ′

w

)
.

This gives extra matrix elements to be added onto the Hamiltonian in (7):∫
dy
∫

dy ′ χi6χj (31)



An embedding approach to electron waveguides 5939

with a similar term coming for the right-hand end. The local density of states for the corner
connected to the straight waveguide can then be calculated from the Green function for this
system:

σ(r, E) = 1

π

∑
ij

ImGij (E + iε)χi(r)χj (r). (32)
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Figure 13. The density of states as a function of the energy (relative to the first threshold
energy) for the second threshold energy for the circular corner.

We shall present here the corner density of statesn(E), defined asσ(r, E) integrated
through region I. From (32) this is given simply by

n(E) = 1

π

∑
ij

ImGij (E + iε)Oij (33)

whereOij is the overlap integral defined in (8).
The density of states for the circular corner is shown in figures 12 and 13. In figure 12

we see the bound state just below the first threshold, atE = 0.9956E1 (it is broadened in
figure 12 by a small imaginary part of 0.0002 au added to its energy). An analogous state
appears just below the second threshold (figure 13), but this can interact with the continuum
and it is broadened—only slightly—into a resonance. The lineshape is characteristic of a
Fano resonance [21]. Above the thresholds,Eth, the density of states has one-dimensional
behaviour, with a contribution varying like 1/(E − Eth)1/2 from each open channel [22].
This is modified at thresholds as we see from the figures, rounded off and with the bound
state or resonance pulled off. We have seen previously that the transmission round the
circular corner is remarkably uniform, apart from anomalies just below thresholds—the
anomaly shown in figure 6 is at almost exactly the same energy as the resonance in figure 13,
and the two phenomena are presumably linked by scattering theory.

The square corner has a dramatic effect on the density of states (figure 14). Once again,
a bound state is pulled off below the first threshold, with a greater binding energy than in
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Figure 14. The density of states as a function of the energy (relative to the first threshold
energy) for the square corner.

the circular case,E = 0.9399E1. There are no obvious resonances at higher energies—
the mixing of channels by the square corner broadens any resonances out completely, but
surprisingly enough there are very sharp features at the second and third thresholds. The
most striking feature of the density of states of the square corner is how constant it is. It is in
fact much more akin to the constant density of states of an (infinite) two-dimensional system
than the one-dimensional density of states shown by the circular corner. The density of states
in two dimensions is 1/2π per unit area and with an area of 1.4 included in region I this
would give a constant corner density of states of 0.22 au, in fair agreement with figure 14.
There is no obvious connection between the rather featureless density of states in this case
and the highly structural transmission coefficient. It would be interesting to see whether the
densities of states can be explored directly.

6. Conclusion

The embedding method provides a simple and straightforward way to calculate both static
and transmission properties of conducting channels, and the flexibility of the basis set will
enable other scatterers—such as impurities—to be included in a very simple manner. It
also enables us to study the local density of states, on the same footing. We are currently
exploring other applications of this method.

Acknowledgments

We thank S V Dewar and J M Heaton for helpful discussions. Support from the EPSRC
and a CASE award from DERA, Malvern are gratefully acknowledged.



An embedding approach to electron waveguides 5941

References

[1] Beenakker C W J and vanHouten H 1991Solid State Physicsvol 44 (New York: Academic) p 1
[2] Crampin S, Nekovee M and Inglesfield J E 1995Phys. Rev.B 51 7318
[3] Sols F and Macucci M 1990Phys. Rev.B 41 11 887
[4] Martorell J, Klarsfeld S, Sprung D W L and Wu Hua1991Solid State Commun.78 13
[5] Wu Hua, Sprung D W L andMartorell J 1992J. Appl. Phys.72 151
[6] Berggren K-F and Ji Zhen-Li 1993Phys. Rev.B 47 6390
[7] Lent C S 1990Appl. Phys. Lett.56 2554
[8] Pendry J B, Pr̂etre A, Rous P J and Martı́n-Moreno L 1991Surf. Sci.244 160
[9] Sheng Wei-Dong 1997J. Phys.: Condens. Matter9 8369

[10] Lang N D 1995Phys. Rev.B 52 5335
[11] Ji Zhen-Li 1992Semicond. Sci. Technol.7 198
[12] Ji Zhen-Li 1993J. Appl. Phys.73 4468
[13] Berggren K-F, Besev C and Ji Zhen-Li 1992Quantum Effect Physics, Electronics and Applicationsed K

Ismail, T Ikoma and H I Smith (Bristol: Institute of Physics Publishing) p 25
[14] Lent C S 1990Appl. Phys. Lett.57 1678
[15] Tekman E and Bagwell P F 1993Phys. Rev.B 48 2553
[16] Weisshaar A, Lary J, Goodnick S M and Tripathi V K 1989 Appl. Phys. Lett.55 2114
[17] Yalabik M C 1994 IEEE Trans. Electron Devices41 1843
[18] Goldstone J and Jaffe R L 1992Phys. Rev.B 45 14 100
[19] Price P J 1993Appl. Phys. Lett62 289
[20] Ulreich S and Zwerger W 1998Europhys. Lett.41 117
[21] Fano U 1961Phys. Rev.124 1866
[22] Ferry D K and Goodnick S M 1997Transport in Nanostructures(Cambridge: Cambridge University Press)


